1	Give definition and describe formulation of scattering theory in terms of representation theory	Nº1
2	Describe the type of scattering matrix	Nº1
3	Give definition of the discrete spectrum	Nº1
4	Explain the virial theorem	Nº1
5	Describe same particles	Nº1
6	Give definition of statistical physics	Nº1
7	Explain S-matrix	Nº1
8	Give definition and describe continuous spectrum	Nº1
9	Descibe the scattering operator in the continuous case	Nº1
10	Explain representation theory	Nº1
11	Characterize analytic properties of the wave function	Nº1
12	Give definition of spectral theory	Nº1
13	Describe the Green's function	Nº1
14	Explain perturbation theory	Nº1
15	Characterize applications of spectral theory	Nº1
16	Describe operator algebra	Nº2
17	Give definition of the time Green's function	Nº2
18	Explain translational representation for the solution of the wave equation in free space	Nº2
19	Characterize the wave function in the semiclassical approximation	Nº2
20	Describe translational representation for the solution of the wave equation in free space	Nº2
21	Explain quantum oscillator under the influence of an external force	Nº2
22	Give definition and describe parametric excitation of a quantum oscillator	Nº2
23	Explain the scattering matrix	Nº2
24	Describe heisenberg representation	Nº2
25	Give definition of canonical transformations	Nº2
26	Describe generalization of the normalization	Nº2
27	Analyze quantum oscillator under the influence of an external force	Nº2
28	Give definition and describe perturbation theory for quasistationary states	Nº2
29	Analyze wave function of a multichannel system	Nº2
30	Explain the motion of two particles in an external potential field	Nº2

31	Explain section and unitarity of the S matrix	Nō3
32	Describe symmetry of the S matrix	Nō3
33	Give definition of S matrix and its relation to the R-matrix	Nō3
34	Explain threshold phenomena	Nō3
35	Characterize energy dependence of the scattering cross section near the threshold of reactions	Nº3
36	Describe generalization to the case of particles with spin	Nō3
37	Give definition and describe the Faddeev equations	Nō3
38	Describe general formulas for scattering cross sections	Nō3
39	Explain the motion of two particles in an external potential field	Nō3
40	Analyze the formula for determining the amplitudes of various processes	Nō3
41	Explain asymptotics of the wave function at large distances	Nº3
42	Explain and describe theory of weak interactions	Nō3
43	Analyze reactions with neutrino emission	Nō3
44	Describe quasienergy of a system subjected to periodic action	Nō3
45	Characterize multiplication in the case of several channels	Nō3